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Abstract

In the recent past, a shift has taken place from manned to unmanned Intelli-

gence, Surveillance, and Reconnaissance (ISR) missions. This shift has lead to an

increase in the number of unmanned vehicles (UV) operating in a theater. Addition-

ally, removal of the crew allows for a reduction in vehicle scale, which leads to an

increased ability to operate in GPS degraded environments. With the loss of GPS

signals the vehicles must rely on Inertial Navigation Systems (INS) which when re-

duced to an appropriate size are inherently inaccurate. This research endeavors to

exploit three attributes of increased UV use for ISR missions. These attributes are:

increased numbers of UVs, on-board vision, and wireless communications.

This research’s focus is the development and validation of a cooperative navi-

gation system based on the measurement of UV position relative to shared landmark

position estimates. Each UV in the network locates landmarks using it’s on-board

vision system and transmits the data to all other system UVs. After receiving data

from the other UVs, the system fuses the landmarks with on-board measurements

using a federated filter architecture.

The system is evaluated using Matlabr simulation. Simulations of the coopera-

tive system, with and without ranging, are compared to a non-cooperative simulation.

The comparison is performed using four platform motion scenarios: stationary, linear,

angular, and full motion. The simulation results demonstrate position error estimate

improvements of 0.5 cm to 1 cm. Additionally, the stationary and linear motion sce-

narios demonstrate attitude observability difficulties eliminated by the introduction

of angular motion.
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Vision-Aided, Cooperative

Navigation

for

Multiple Unmanned Vehicles

I. Introduction

T
his thesis outlines a research effort focused on expanding previous research into

the fusion of optical and inertial sensors for robust, autonomous navigation

to multiple platforms. This research effort is motivated by the recent increase in the

number of small unmanned vehicles with the ability to operate in environments where

external navigation reference sources are unavailable.

The development of Unmanned Aerial Vehicles (UAVs) began soon after the first

manned flight. Originally, this progression was constrained to flying bomb or cruise

missile design and testing. However, UAV development quickly expanded into Intelli-

gence, Surveillance, and Reconnaissance (ISR) missions following the 1959 shoot-down

of Francis Gary Powers over Russia [4]. In addition to advancements in UAV tech-

nology, numerous Unmanned Ground (UGVs) and Maritime (UMVs) vehicles have

been developed for ISR work. The evolution of unmanned systems has lead to a shift

from manned to unmanned ISR missions which has in-turn lead to an increase in the

number of Unmanned Vehicles (UVs) operating in a theater.

“Today, we now have more than 5,000 UAVs, a 25-fold increase since 2001. But

in my view, we can do - and we should do - more to meet the needs of men and women

fighting in the current conflicts...” [6] With this statement, during a speech to the Air

War College in April 2008, Defense Secretary Gates called for further increase in the

number of UAVs fielded by the Air Force.

The development of UV technologies has removed the pilot and crew from the

vehicle to safe locations. As a result the scale of these vehicles may be reduced con-

siderably. This reduction in scale allows for the increased operation of UVs in Global

1



Positioning System (GPS) degraded environments. These environments include but

are not limited to, urban canyons, caves, underwater, and building interiors. With

the loss of GPS signal the vehicles are forced to rely on Inertial Navigation Systems

(INS) which, when reduced to an appropriate size, are inherently inaccurate.

As the reliance on these vehicles increases so does the desire for ever more accu-

rate navigation and targeting. “The ability to positively identify and precisely locate

military targets in real-time is a current shortfall with DoD UAS.” In response, the

Department of Defense (DoD) has designated reconnaissance and precision target-

ing as two of their top three priorities for UVs in all three categories (UAV, UGV,

UMV) [14]. The ability to precisely locate targets is dependent on the accuracy of

the targeting platform’s navigation state. Therefore, any increase in the accuracy of

the navigation state also improves the location estimate of a target.

The concept of this thesis is inspired by three factors. First, previous research

to exploit the availability of visual data on board a UV demonstrates the ability of

vision aiding to improve the navigation solution. Next, the increased numbers of UVs

operating within a theater provides for multiple sources of visual data. Finally, the

capability of wireless communication, inherent in the vast majority of UVs designed

today, provides a readily available means of sharing visual data between platforms.

1.1 Problem Definition

The measurement of a target location is a function of the position of the mea-

surement device, the alignment of the measurement device to the platform, and the

accuracy of the measurement device. Therefore, the accuracy of the navigation so-

lution impacts the ability of the platform to precisely locate targets. This research

focuses on the accuracy of the navigation solution and leaves the alignment and ac-

curacy of the measurement device to other research efforts.
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For the purposes of this thesis, navigation is defined as the determination of

position, velocity, and attitude relative to a predefined reference frame. The most

common method for determining a navigation solution, in the absence of GPS, is the

INS.

1.1.1 Inertial Navigation Systems. An INS is composed of two types of

passive sensors: accelerometers and gyroscopes. Accelerometers measure the specific

force acting on the platform in the sensitive axis direction of the accelerometer, while

gyroscopes measure the angular rotation rate of the platform with respect to an

inertial reference frame. The measurements of both devices are corrupted by errors

which are discussed further in Chapter II, Sections 2.4.1 and 2.4.2 respectively. The

combination of measurements from these two devices provide a navigation solution

relative to an initial position.

The solution of an INS will drift away from the true solution as a function

of time, due to the errors inherent in the sensors. This drift may be reduced by the

incorporation of additional measurements to the system. Previous research has shown

visual aiding of an INS reduces this drift.

1.1.2 Vision Aiding. Vision aiding is the use of image sensors to measure

the position of features within a sequence of images to measure the linear and angular

drift of the platform. Previous research into vision aiding of an INS is discussed further

in Chapter II, Section 2.6.

1.2 Research Contribution

The primary contribution of this research is the application of distributed fil-

tering techniques to existing research into the coupling of image and inertial sensors.

This expands the current capabilities of vision-aided navigation to multiple platform

cooperative systems, improving the accuracy of individual platform navigation solu-

tions.
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1.3 Assumptions

This research is an extrapolation of the image and inertial fusion navigation al-

gorithm developed in [20]. Therefore, the following four assumptions of the algorithm

are required for this research:

• the system includes a strapdown inertial sensor which is rigidly mounted relative

to one or more cameras,

• the cameras capture images at known times relative to inertial measurements,

• the initial navigation state and accuracy statistics are known, and

• the estimated distance to objects in the scene are available.

The estimated distance to objects may be provided from exploitation of knowledge of

the world or through binocular stereopsis.

In addition to these assumptions, the multiple platform nature of this research

requires:

• image feature descriptors generated on each platform are of the same format,

• feature positions are computed in the n-frame,

• a common communication protocol is available to all platforms for the transfer

of data, and

• to simplify implementation of the cooperative navigation system (CNS), range

measurements between platforms are acquired at the same moment as a platform

position is generated.

These additional assumptions are discussed in detail in Chapter III.
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1.4 Overview of Thesis

This thesis is organized as follows. Chapter II provides the mathematical back-

ground for the cooperative, multiple platform vision aided navigation system. This

includes mathematical notation, coordinate frames and transformations, inertial nav-

igation, extended Kalman and federated filtering, and previous vision aiding and

multiple vehicle research. Chapter III describes the methodology used to develop

the cooperative vision aided navigation system. Chapter IV presents the simulation

data and analyzes the results. Finally, Chapter V presents conclusions regarding the

theory and recommendations for future research.
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II. Background

T
his chapter reviews the concepts and background required to fully develop the

problem of multiple unmanned vehicle, cooperative, vision-aided navigation.

The chapter opens with a definition of the mathematical notation used throughout

the document. Next, the reference frames used for inertial navigation are defined. A

short discussion of coordinate transformations presents the mathematical techniques

required to properly format coordinates for any reference frame. Then, the concepts

of INS operation are briefly discussed with an emphasis on Micro-miniature Elec-

tromechanical Systems (MEMS) units. A brief discussion of Kalman filtering follows,

providing a foundation for vision-aiding, federated filtering, and this research. Fol-

lowing this, the background of INS vision-aiding and the work performed in this field

are explored to develop the vision framework of the problem. Next, the federated

filter is defined to provide the architecture upon which the sharing of information,

and navigation state estimates are developed. Finally, the concept of multiple vehicle

cooperation is presented to provide a foundation for the development of a network of

unmanned agents.

2.1 Mathematical Notation

The mathematical notation used throughout this research is described in Ta-

ble 2.1.

2.2 Reference Frames

Precise definition of coordinate reference frames is a vital prerequisite for inertial

navigation. For the purposes of this thesis, five reference frames are defined based

on [7] and [19]. All of the reference frames defined are right-handed orthonormal

coordinated systems in ℜ3.

The true inertial reference frame (I-frame) has no fixed origin or orientation; is

non-rotating and non-accelerating. This is a theoretical reference frame in which the

Newtonian laws of physics apply.
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Table 2.1: Mathematical Notation.

Type Description Example

Scalars Scalar variables are designated with italics. x or X

Vectors Vectors are denoted by lower case bold. x

Matrices Matrices are denoted by uppercase bold. X

Transpose The transpose of a matrix or vector is des-
ignated with a superscript capital T.

xT or XT

Estimates Estimates of random variables are identi-
fied with the hat character.

x̂

Calculated Variables Variables corrupted by errors are denoted
with the tilde character.

x̃

Nominal Values Nominal values are denoted with a bar. x̄

Direction Cosine Matrix
(DCM)

DCMs are designated by a bold capital C
with a subscript designating the originat-
ing coordinate frame and a superscript des-
ignating the resulting coordinate frame.

Cr
o

Frame of Reference Vectors expressed in a specific reference
frame are annotated with a superscript let-
ter representing the frame.

pn

Skew Symmetric Form Vectors represented in skew symmetric
form are enclosed in parentheses with a
cross product symbol.

(x×)
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Figure 2.1: Body Frame of Reference [19]

The inertial frame (i-frame) is a non-rotating, Earth-centered frame in which

the z-axis is coincident with the polar axis. Due to the motion of the Earth around

the Sun, and the motion of the Sun through space, the i-frame is an accelerating

frame. Additionally, the i-frame is non-rotational with respect to the fixed stars. As

the I-frame has no fixed origin or orientation, the i-frame is designed to provide these

critical components of a reference frame. This allows measured physical values to be

transformed into other frames of reference as discussed in Section 2.3.

The Earth frame (e-frame) originates at the center of the Earth and is fixed

with respect to the surface. The z-axis is aligned with the geographic polar axis. The

x-axis lies along the intersection of the Greenwich meridian and equatorial planes.

The e-frame therefore rotates in relation to the i-frame.

The navigation frame (n-frame) is centered about a fixed point on the navigating

body. The x-axis lies within the plane created by the Earth’s polar axis and the origin

of the n-frame, pointing towards the north pole. The z-axis points in the direction of

gravitational acceleration.

The body frame (b-frame) is centered at the origin of the n-frame. However,

the axes differ from the n-frame. The axes are aligned with the roll, pitch and yaw

axes of an aircraft as depicted in Figure 2.1.

In addition to these five reference frames, a system designer may develop any

new arbitrary reference frame which will simplify the data processing for the system.

For the purpose of this thesis, the set of these possible frames will be annotated as

the li-frame local frames, or as ci-frame for camera frames, where i = 1 . . . n and n is

the total number of local or camera frames.
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The next section discusses the means to transform coordinates between these

coordinate systems.

2.3 Coordinate Transformations

As discussed in [19] coordinate transformations describe the relationship be-

tween two reference frames and are classified as either three or four-parameter trans-

formations. Three-parameter coordinate transformations contain a singularity at a

pitch angle of 90◦. Therefore, this research will use the four-parameter DCM coordi-

nate transformation.

The DCM is a 3x3 matrix representing the unit vector of the originating frame

projected along the axis of the resulting frame. The DCM is written in component

form as:

Cr
o =











c11 c12 c13

c21 c22 c23

c31 c32 c33











(2.1)

The elements cij represents the cosine of the angle between the i-axis of originating

reference frame and the j-axis of the resulting frame.

The DCM is propagated in time through:

Ċr
o = Cr

oΩ
o
ro (2.2)

where

Ωo
ro =











0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0











(2.3)

is the skew symmetric form of the angular rate vector ωo
ro =

[

ωx ωy ωz

]T

, which

represents the angular turn rate of the originating frame with respect to the resulting

frame expressed in the axes of the originating frame.
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In the absence of a GPS signal, an INS may provide the coordinates for trans-

formation.

2.4 Inertial Navigation

In this section, the basic concepts of inertial navigation are discussed. This

discussion includes strapdown INS sensors, related errors, available measurements,

and differential error equations.

2.4.1 Accelerometers. Acceleration due to inertial motion and acceleration

due to gravity are indistinguishable as described by Einstein’s Theory of Special

Relativity [5]. Therefore, accelerometers measure the specific force applied to them

in the direction of alignment. This measurement is the difference between the inertial

motion and gravitational accelerations, defined as

f = p̈ − g (2.4)

where f is the specific force, p is the inertial position and g is the acceleration due to

gravity.

The measurement may be contaminated by errors induced by the design of the

accelerometer [19]. The specific force measurement (f̃ b
x) may be expressed as:

f̃ b
x = (1 + Sx)f

b
x +Myf

b
y +Mzf

b
z +Bvf

b
xf

b
y + ab + ηb (2.5)

where f b
x, f

b
y , f

b
z are the true specific forces applied in the sensitive and cross axes and

the remaining errors are:

• Measurement Bias(ab): An additive error arising as a direct result of the

characteristics of the accelerometer’s component parts. This error may fluctuate

slowly with time and may be compensated for using mechanical calibration

techniques.
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• Scale Factor(Sx): A multiplicative error caused by temperature and non-ideal

behavior of system components. As with measurement bias, scaling factors may

by compensated for using calibration.

• Cross Axis Coupling(My and Mz): An additive error caused by the inclusion

of forces applied to the device in the non-sensitive axes. This error may have

root cause in the design of the device or in the misalignment of the device with

the vehicle.

• Vibro-pendulous Error(Bv): An error due to vibration in the sensitive axis.

This error may be reduced by isolation of the device from vibration sources.

• Random Bias(ηb): An error caused by instabilities within the device.

In addition to these errors, the final measurement may be corrupted by errors in the

gyroscopes and inaccuracies of the gravity model used to remove the gravitational

acceleration from the specific force equation.

2.4.2 Gyroscopes. A spinning wheel or rotor, by virtue of its angular mo-

mentum vector, tends to maintain the direction of its spin axis relative to inertial

space [19]. This defines a reference direction which remains fixed in the i-frame.

The gyroscopes used in strapdown systems measure the angular rate of a plat-

form, relative to inertial space, about the gyroscope input axis. The measurement

may be contaminated by errors induced by the design of the gyroscope [19]. The

angular rate measurement (ω̃b
ibx

) may be expressed as:

ω̃b
ibx

= (1 + Sx)ω
b
ibx

+Myω
b
iby

+Mzω
b
ibz

+Bgxf
b
x +Bgzf

b
z +Baxzf

b
xf

b
z + bb + ηb

x (2.6)

where ωb
ibx

, ωb
iby

, and ωb
ibz

are the true turn rates about the input, output, and spin

axes respectively; f b
x, and f b

z are the true specific forces applied along the input and

spin axes and the remaining errors are:
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• Fixed Bias (bb): A sensor error present in the absence of an applied input

rotation. A consequence of multiple effects, including residual torques from

flexible leads, spurious magnetic fields, and temperature gradients.

• Acceleration Dependent Bias (Bfy and Bfz): An error proportional to the

magnitude of the applied acceleration. Apparent in spinning mass gyroscopes

as a result of an unbalanced rotor mass.

• Anisoelastic Bias (Baxz): An error proportional to the product of acceleration

along orthogonal pairs of axes. Apparent in spinning mass gyroscopes and

caused by the rotor suspension structure.

• Scale Factors (Sx): An error caused by imperfections and temperature fluctu-

ations in the pickoff and nulling components of the gyroscope.

• Cross Coupling (My and Mz): Errors due to the non-orthogonality of the

sensor axes.

• Zero-Mean Bias (ηb
x): An error caused by instabilities in the gyroscope with

short correlation times.

The accelerometer and gyroscope measurements equations are now used to com-

pute the differential error equations.

2.4.3 Differential Error Equations. The differential error equations are com-

puted in three parts; inertial sensor errors, attitude error, and position and velocity.

The results are then combined to generate the state-space error model.

2.4.3.1 Inertial Sensor Errors. The inertial sensor errors are modeled

as a bias with added random noise. The accelerometer and gyroscope measurement

models are:

f b
m = f b + ab + wb

a (2.7)

ωb
ibm

= ωb
ib + bb + wb

b (2.8)
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where wb
a and wb

b are additive white Gaussian noise processes, ab is the accelerometer

bias, and bb is the gyroscope bias.

The accelerometer and gyroscope biases are modeled as first-order Gauss-Markov

processes expressed by:

ȧb = −
1

τa
ab + wb

abias
(2.9)

ḃb = −
1

τb
bb + wb

bbias
(2.10)

where τa and τb are the accelerometer and gyroscope time constants, and the processes

are driven by the white noise terms wb
abias

and wb
bbias

.

2.4.3.2 Attitude Error. The development of the attitude differential

error equations begins with the attitude error vector, which is modeled as:

ψ =











ψn

ψe

ψd











(2.11)

where ψn, ψe, and ψd are small angles relative to the north, east and down axes of

the n-frame respectively.

Due to the small angle assumption, the b-frame to n-frame DCM can be for-

mulated as:

C̃n
b ≈ [I − (ψ×)]Cn

b (2.12)

Taking the derivative of (2.12) with respect to time and solving for (ψ̇×) results in:

(ψ̇×) = [I − (ψ×)]Cn
b Ω

b
nbC

b
n − C̃n

b Ω̃
b
nbC

b
n (2.13)
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Next, the b-frame to n-frame rotation rate vector is defined as:

ω̃b
nb = ωb

ibm
− C̃b

nC
n
eω

e
ie (2.14)

where ωb
ibm

is the rate vector measured by the gyroscopes.

Substituting (2.8), (2.12), and (2.14) into (2.13) and eliminating second-order

terms results in the angular differential error equation:

ψ̇ = −[(Cn
eω

e
ie)×]ψ − Cn

b b
b − Cn

b w
b
b (2.15)

2.4.3.3 Position and Velocity Error. The position and velocity differ-

ential error equation development begins with computing the position error.

The n-frame velocity is defined as:

ṗn = vn (2.16)

and the position differential error equation is:

δṗn = δvn (2.17)

Next, the calculation of the velocity error begins with the definition of the

position in the i-frame:

pi = Ci
e [pe

0 + Ce
np

n] (2.18)

where pe
0 is the location of the origin of the local navigation frame, relative to the

e-frame.

The acceleration, in i-frame coordinates, is calculated by taking the second

derivative using the chain rule:

p̈i = Ci
eC

e
np̈

n + 2Ci
eΩ

e
ieC

e
nṗ

n + Ci
e(Ω

e
ie)

2 [pe
0 + Ce

np
n] (2.19)
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Appling (2.4) to (2.19) and solving for the n-frame acceleration provides:

p̈n = fn − 2Cn
eΩ

e
ieC

e
nṗ

n − Cn
e (Ωe

ie)
2 [pe

0 + Ce
np

n] + gn (2.20)

Then, substituting (2.16) into (2.20) and transforming the specific force into the

b-frame yields:

v̇n = Cn
b f

b − 2Cn
eΩ

e
ieC

e
nv

n − Cn
e (Ωe

ie)
2 [pe

0 + Ce
np

n] + gn (2.21)

The centripetal acceleration and gravity terms are combined using the gradient

of the gravity potential:

W (pe) =
GM

||pe||
+

1

2
peT

ΩeT

ie Ωe
iep

e +H.O.T. (2.22)

where GM is the gravitational constant of Earth. Substituting (2.22) into (2.21)

provides:

v̇n = Cn
b f

b − 2Cn
eΩ

e
ieC

e
nv

n + Cn
eg

e [pe
0 + Ce

np
n] (2.23)

As the velocity calculation is corrupted by accelerometer and attitude errors;

substituting the position, velocity, attitude and accelerometer measurement errors

equations into (2.23) yields:

˙̃vn = [I − (ψ×)]Cn
b (f b + ab + wb

a) − 2Cn
eΩ

e
ieC

e
n(vn + δvn)

+ Cn
eg

e [pe
0 + Ce

np
n + Ce

nδp
n] (2.24)

The n-frame acceleration error is defined as:

δv̇n = ˙̃vn − v̇n (2.25)
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Finally, the velocity differential error equation is computed by substituting

(2.21) and (2.24) into (2.20) and eliminating second-order terms:

δv̇n = Cn
eGCe

nδp
n − 2Cn

eΩ
e
ieC

e
nδv

n + (fn×)ψ + Cn
b a

b + Cn
b w

b
a (2.26)

where G is the gradient of the gravity vector, which is calculated as:

G =
GM

||pe||3
[

3p̌e(p̌e)T − I
]

− (Ωe
ie)

2 (2.27)

2.4.3.4 State-space Error Model. With the inertial sensor, attitude,

position, and velocity differential error equations computed, the error dynamics are

formulated using the linear, stochastic, state-space model which is driven by white

noise:

δẋ(t) = F(t)x(t) + G(t)w(t) (2.28)

The navigation error state vector is composed of the position, velocity, attitude,

accelerometer bias, and gyroscope bias errors, resulting in the fifteen element vector:

δx =























δpn

δvn

ψ

δab

δbb























15×1

(2.29)

The noise vector is composed of the accelerometer measurement, gyroscope mea-

surement, accelerometer bias, and gyroscope bias noise terms, resulting in the twelve

element vector:

w =

















wb
a

wb
b

wb
abias

wb
bbias

















(2.30)
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Finally, the overall differential error equation is:

δẋ =

























03 I3 03 03 03

Cn
eGCe

n −2Cn
eΩ

e
ieC

e
n (fn×) Cn

b 03

03 03 −[(Cn
eω

e
ie)×] 03 −Cn

b

03 03 03 −
1

τa
I3 03

03 03 03 03 −
1

τb
I3

























δx

+























03 03 03 03

Cn
b 03 03 03

03 −Cn
b 03 03

03 03 I3 03

03 03 03 I3























w (2.31)

These equations show accelerometer and gyroscope outputs may be integrated

to estimate the change in position, velocity, attitude, and inertial sensor biases. How-

ever, these estimates drift rapidly, on the order of 90 meters in 1 minute, for a stan-

dard MEMS IMU position error [10]. The drift may be constrained by incorporating

measurements from additional sensors using a Kalman filter.

2.5 Kalman Filtering

This section discusses the concepts of Kalman filtering by developing the linear

filter equations and expanding the linear equations to nonlinear functions.

2.5.1 Linear Kalman Filter. The linear Kalman filter is an optimal, recur-

sive data processing algorithm [12] designed to estimate desired quantities from data

provided by a noisy environment.

The general form of a time-varying linear differential equation is:

ẋ(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.32)
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where ẋ(t) is the state estimate, F(t) is the homogeneous system dynamics matrix,

B(t) is the input matrix, u(t) is the system input vector, G(t) is the noise transfor-

mation matrix, and w(t) is a white Gaussian noise process of zero-mean and strength

Q(t).

The white noise covariance is computed as:

E
{

w(t)wT (t+ τ)
}

= Q(t)δ(τ) (2.33)

where δ(τ) is the Dirac delta function.

The maximum a posteriori state estimate is the mean value and is denoted by

the hat character:

x̂(t) = E{x̂(t)} (2.34)

= Φ(t, t0)E{x̂(t0)} +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ (2.35)

where Φ(t, t0) is the state transition matrix which satisfies Φ̇(t, t0) = F(t)Φ(t, t0) and

Φ(t0, t0) = I.

The mean squared value of x̂(t) is:

E
{

x̂(t)x̂T (t)
}

= Φ(t, t0)E
{

x̂(t0)x̂
T (t0)

}

ΦT (t, t0)

+

∫ t

t0

Φ(t, τ)G(τ)Q(τ)GT (τ)ΦT (t, τ)dτ (2.36)

and the covariance of x̂(t) is derived from the mean squared value by substituting

E
{

x̂(t)x̂T (t)
}

= P̂xx(t) + mx(t)m
T
x (t) (2.37)

E
{

x̂(t0)x̂
T (t0)

}

= P̂xx(t0) + mx(t0)m
T
x (t0) (2.38)

mx(t) = Φ(t, t0)mx(t0) (2.39)
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into (2.36) and solving for P̂xx(t):

P̂xx(t) = Φ(t, t0)P̂xx(t0)Φ
T (t, t0)

+

∫ t

t0

Φ(t, τ)G(τ)Q(τ)GT (τ)ΦT (t, τ)dτ (2.40)

Using (2.35) and (2.40) the state estimate and covariance are propagated from

time ti to ti+1:

x̂(t−i+1) = Φ(ti+1, ti)x̂(t+i ) +

∫ ti+1

ti

Φ(ti+1, τ)B(τ)u(τ)dτ (2.41)

P̂(t−i+1) = Φ(ti+1, ti)P̂(t+i )ΦT (ti+1, ti)

+

∫ ti+1

ti

Φ(ti+1, τ)G(τ)Q(τ)GT (τ)ΦT (ti+1, τ)dτ (2.42)

where the superscript − and + represent the instant before and after a measurement

update respectively.

A set of measurements z is a linear combination of the m measurements of

interest, corrupted by an uncertain disturbance v:

z(ti) = H(ti)x(ti) + v(ti) (2.43)

where H(ti) is the observation matrix and v(ti) is a zero mean white Gaussian noise

vector with a covariance defined as:

E
{

v(ti)v
T (ti)

}

= R(ti)δij (2.44)

where δij is the Kroeneker delta function.
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The state estimates and covariance immediately after a measurement update

are defined as

x̂(t+i ) = x̂(t−i ) + K(ti)
[

z(ti) − H(ti)x̂(t−i )
]

(2.45)

P̂(t+i ) = P̂(t−i ) − K(ti)H(ti)P̂(t−i ) (2.46)

where K(ti) is the Kalman gain matrix, defined as

K(ti) = P̂(t−i )HT (ti)
[

H(ti)P̂(t−i )HT (ti) + R(ti)
]

−1

(2.47)

2.5.2 Extended Kalman Filter. The linear Kalman filter provides sufficient

estimates for many real-world systems; however, the linear filter is unable to provide

an adequate answer for all situations. The extended Kalman filter (EKF) [13] is

developed to estimate these nonlinear cases.

The development of the EKF begins with the definition of the error model. The

state estimate error model is the sum of the nominal trajectory and the error state:

x(t) = x̄(t) + δx(t) (2.48)

The nominal trajectory is defined as:

˙̄x(t) = f [x̄(t),u(t), t] (2.49)

Applying (2.49) and the linear differential equation:

δẋ(t) = F(t)δx(t) + Gw(t) (2.50)

to (2.48) results in the nonlinear dynamics model:

˙̄x(t) + δẋ(t) = f [x̄(t),u(t), t] + F(t)δx(t) + Gw(t) (2.51)
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Then, the state estimate is defined as the sum of the nominal trajectory and

the estimated error:

x̂(t) = x̄(t) + δx̂(t) (2.52)

The state estimate is propagated from time t+i to t−i+1 by calculating the nominal

trajectory with a nonlinear differential equation solver using the state estimate at t+i

as the initial condition. The covariance is propagated as in the linear Kalman filter.

A measurement update is performed by linearizing the nonlinear update equa-

tion:

z(ti) = h[x(ti), ti] + v(ti) (2.53)

about the nominal trajectory at time ti+1:

z(ti) = h[x̄(t−i+1), ti+1] + H(ti+1)δx(ti+1) + v(ti+1) (2.54)

where H(t) is

H(t) =
∂h

∂x

∣

∣

∣

∣

∣

x̄(t),t

=











∂h1

∂x1
· · · ∂h1

∂xn

...
. . .

...

∂hn

∂x1
· · · ∂hn

∂xn











(2.55)

A measurement is defined as the sum of a nominal measurement and an error:

z(ti+1) = z̄(ti+1) + δz(ti+1) (2.56)

Substituting (2.54) into (2.56) and solving for the measurement error provides

the error update equation:

δz(ti) = H(ti+1)δx(ti+1) + v(ti+1) (2.57)

Finally, the post-measurement error state and covariance are calculated using

the linear Kalman filter update equations.
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The Kalman filter is unable to provide any benefit to a system without measure-

ments of the surrounding environment. The next section discusses the use of vision

systems to provide such measurements.

2.6 Vision-Aiding

In [20], Veth developed an image and inertial fusion navigation algorithm. The

algorithm fuses image and inertial data by, a) collecting an image, b) transforming

the landmarks in the image to feature space, c) propagating the navigation state and

feature space to the next time step, d) matching features from the propagated feature

space to the new feature space, and, e) estimating the landmark location.

2.6.1 Image Collection. Digital imaging devices are designed to measure a

pattern of light intensities projected through the optics and aperture onto a sensor.

The pattern is a nonlinear function of the light intensity, optics, and pose of the device

relative to the world. These devices provide a three-dimensional measurement of the

world corrupted by measurement noise, optical distortions, and spatial aliasing. The

three dimensions of the measurement include two spatial and one intensity dimension.

2.6.2 Transformation. Computers are not able to directly distinguish ob-

jects in an image, therefore, the image is transformed into feature vectors residing in

feature space, using an algorithm to describe the pose and object dimensions of the

feature. The algorithm chosen for the transformation is a variant of the scale-invariant

feature tracking (SIFT) algorithm [9] as the stochastic projection can be applied to

the pose with small effects to the object.

The feature transformation is processed by: a) computing the scale-space de-

composition, b) detecting features, and c) calculating feature description vectors.
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2.6.2.1 Scale-Space Decomposition. The scale-space decomposition is

computed using a Gaussian spatial filter defined by the following function:

g(x, y, σ) =
1

2πσ2
e−

x2
+y2

2σ2 (2.58)

where x and y are the spatial dimensions of the image in pixels and σ is the standard

deviation of the blurring function.

The difference of a Gaussian filter is defined as:

f(x, y, k, σ) = g(x, y, kσ) − g(x, y, σ) (2.59)

where k > 1 is the scaling frequency step constant.

Given an initial standard deviation (σ0), and a scaling frequency step constant

(k) the ith difference of a Gaussian filter is:

f(x, y, i) = g(x, y, ki+1σ0) − g(x, y, kiσ0) (2.60)

Varying the scaling frequency step constant decomposes the image into multiple scale

spaces centered on specific spatial frequencies. The step constant is varied in a manner

to maintain equal spacing of the spatial frequencies.

When scale-space decomposition of the image is complete features may be de-

tected readily.

2.6.2.2 Feature Detection. Candidate features are detected by locating

local maxima or minima within the spatial and scale dimensions. Then the spatial

detail for each candidate, centered on the candidate, is calculated as the eigenvalues

of the matrix:

G =





∑

x,y∈W(∇fx)
2

∑

x,y∈W ∇fx∇fy
∑

x,y∈W ∇fx∇fy
∑

x,y∈W(∇fx)
2



 (2.61)
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where W is the window over which the eigenvalues are computed, and ∇fx and ∇fy

are the gradients of f(x, y, i) in the x and y directions.

The strongest candidates are chosen as features by thresholding the related

eigenvalues and refining with the metric:

C(G) = (1 + 2kt)σ1σ2 + kt(σ
2
1 + σ2

2) (2.62)

where σ1 and σ2 are the eigenvalues of G, and kt is a scaling parameter.

The pose subspace of each feature is constructed as:

zpose
n (ti) =

















znx
(ti)

zny
(ti)

σn(ti)

θn(ti)

















(2.63)

where znx
, zny

, σn and θn are the pixel location, scale and primary orientation of

feature n = 1...M for M features in the image at time ti.

2.6.2.3 Feature Description. Finally, with the features within an im-

age detected, the object dimensions (feature descriptions) are calculated as function of

the intensity gradient of the scale-space surrounding each feature. The object dimen-

sions of a feature are composed of the normalized histogram of the gradients around

the feature.

When an image transformation is complete the image is represented by a col-

lection of M vectors in feature space:

i(x, y, ti) → z∗n(ti) ∀ n ∈ {1, ...,M} (2.64)
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where

z∗n(ti) =





zpose
n (ti)4×1

zobject
n (ti)128×1



 (2.65)

With the image transformation complete, the computed features are now prop-

agated to the next time step.

2.6.3 Propagation. The state-space error estimate and landmark error are

propagated from time ti to ti+1 using the EKF developed in Section 2.5.2.

The landmarks detected within an image are assumed to be stationary. How-

ever, a small additive random walk is added to account for the effects of calibration

and initialization errors, and to prevent the covariance from collapsing to zero. The

landmark error is defined as:

δẏn(t) = Gy(t)wy(t) (2.66)

where Gy(t) is the influence matrix and wy(t) is zero-mean, white Gaussian noise

with covariance:

E
{

w(t)wT (t+ τ)
}

= Q(t)δ(τ) (2.67)

The navigation and landmark error covariances are propagated with the follow-

ing equations:

Pxx(t
−

i+1) = Φ(ti+1, ti)Pxx(t
+
i )ΦT(ti+1, ti)

+

∫ ti+1

ti

Φ(ti+1, τ)G(τ)Q(τ)GT (τ)ΦT (ti+1, τ)dτ (2.68)

Pxy(t
−

i+1) = Φ(ti+1, ti)Pxy(t+
i ) (2.69)

Pyy(t
−

i+1) = Pyy(t
+
i ) + [ti+1 − ti]Gy(ti)Qy(ti)G

T
y (ti) (2.70)

2.6.4 Feature Matching. The next step in the vision-aiding algorithm is

to statistically match the predicted features with a new set of measured features at
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time ti+1. The match is performed by defining a metric, known as the Mahalanobis

distance, to measure the quality of a match. The Mahalanobis distance is defined as

the weighted inner product of the predicted feature vector, ẑ∗(ti+1), and the measured

feature vector, z∗n(ti+1):

Dn(ti+1) = [z∗n(ti+1) − ẑ∗(ti+1)]
T
Pz∗z∗(ti+1) [z∗n(ti+1) − ẑ∗(ti+1)] (2.71)

where Pz∗z∗(ti+1) is the covariance of the predicted feature vector. Assuming scale

and rotation independence of the pixel location, the covariance matrix can be written

as:

Pz∗z∗(ti+1) =

















Pzz(ti+1) 0 0 0

0 Pσσ 0 0

0 0 Pθθ 0

0 0 0 Pzdzd

















(2.72)

where Pzz, Pσσ, Pθθ, and Pzdzd
are the pixel location, scale, rotation, and descriptor

uncertainties respectively.

As the SIFT algorithm provides no information regarding the statistical knowl-

edge of Pσσ, Pθθ, and Pzdzd
, the scale and orientation are given zero weight and the

distance metric is decomposed into pose and object descriptor distances:

Dpn
(ti+1) = [zpn

(ti+1) − ẑp(ti+1)]
T
Pzpzp

(ti+1) [zpn
(ti+1) − ẑp(ti+1)] (2.73)

Ddn
(ti+1) = [zdn

(ti+1) − ẑd(ti+1)]
T
Pzdzd

(ti+1) [zdn
(ti+1) − ẑd(ti+1)] (2.74)

where

Pzpzp
(ti+1) =











Pzz(ti+1) 0 0 0

0 ∞ 0 0

0 0 ∞ 0











(2.75)

Pzdzd
(ti+1) = I (2.76)
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The result of decomposing the distance is to a) include only the effects of the predicted

pixel location in the pose distance, and b) weight all of the components of the object

descriptor equally.

The two distance metrics are used in succession to improve the search speed and

maintain pixel error measurement independence. A successful match is found when

the object distance is below a pre-defined threshold. Additionally, the application of

a uniqueness filter is available to reject insufficiently distinct feature matches.

2.6.5 Landmark Location Estimation. Landmark location estimates are

computed using using binocular stereopsis as it does not require a terrain model and

is therefore appropriate for navigation in unknown environments. For convenience,

a binocular reference frame c0 is defined midway between the two camera frames ca

and cb.

The computation of landmark locations is completed in three steps: 1) feature

selection and matching 2) calculation of line of sight from the binocular origin to the

landmark, and 3) estimating the landmark location.

2.6.5.1 Feature Selection and Matching. The selection of a feature is

performed on one of the images of the binocular pair as described in Section 2.6.2.2.

The resulting feature is then statistically projected into the feature space of

the second image. For example, given a feature in the ca-frame the projected pixel

location in the cb-frame is computed as:

zb = Tpix
cb

scb (2.77)

scb = Ccb
c0

[

kCc0
ca
Tca

pixz
a + pc0

cama
− pc0

camb

]

(2.78)

where Tca

pix and Tpix
cb

are the camera projection matrices for cameras a and b, pc0
cama

and pc0
camb

are the location vectors of the camera frames relative to the binocular

frame, and k is the unknown distance parameter.
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Variations in the distance parameter describe an epipolar line in the cb-frame

image modeled as a Gaussian distribution with mean and variance:

k̄ = E[k] = 4.5 dbinoc (2.79)

σ2
k = E

[

(k − k̄)2
]

= 9 d2
binoc (2.80)

where the binocular disparity dbinoc is defined as:

dbinoc = ||pc0
cama

− pc0
camb

|| (2.81)

Matching of features is performed by determining the features within a statis-

tical distance of the prediction and choosing the feature with the smallest feature

description distance. The method for matching features is the same a discussed in

Section 2.6.4.

2.6.5.2 Line of Sight. Next, the estimate of the relative line of sight

from the c0-frame origin to the landmark is computed from the pixel locations of the

landmark in each camera frame:

za = Tpix
ca

Cca

c0

[

sc0
0 − pc0

cama

]

(2.82)

zb = Tpix
cb

Ccb
c0

[

sc0
0 − pc0

camb

]

(2.83)

The estimation results in an estimated line of sight vector, ŝc0
0 , and corresponding

covariance, Psos0
.

2.6.5.3 Location Estimation. Finally, the n-frame landmark location

is estimated by substituting the line of sight vector estimate and navigation state

estimate into the landmark location equation:

yn = pn + Cn
b

[

pb
0 + Cb

c0
sc0
0

]

(2.84)
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In the next section, the concepts of federated filtering are discussed, providing

the architecture upon which the sharing of information, and navigation state estimates

are developed.

2.7 Federated Filtering

The federated filter, as described in [2], is an information-sharing filter, there-

fore, before the federated filter may be described the term information must be de-

fined. The following definition of information, from [2], is used throughout this thesis.

Information within an optimal estimator (filter) generally represents knowl-
edge of the random process (state) being estimated. Information is gained
from initial state estimates and periodic measurements. Information is
lost through propagation uncertainties (processed noise). Specifically, in-
formation within a filter is represented by its information matrix and its
information state vector (or equivalently, by its error covariance matrix
and standard state vector). The information matrix (covariance matrix
inverse) is a statistical measure of the amount of information present. The
information state vector (product of the information matrix and standard
state vector) represents specific knowledge of the actual random process.
Greater information implies smaller estimation errors, and vice versa.

The federated filter is designed to share information amongst multiple local

filters and one master filter, and from their solutions build a total solution. The basic

information sharing methodology implemented by the federated filter is:

• divide the total system information among several component local filters and

a single master filter;

• perform local and master filter time propagation and measurement processing,

adding local sensor information;

• recombine the updated local and master filter information in to a new total

sum.

A typical federated filter set up is depicted in Figure 2.2. Local sensors, 1...n,

each have an associated local filter with inputs from the local sensor and a common
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Figure 2.2: Information Partitioning in Federated Filter [2].

reference INS. Additional local sensor measurements without a local filter are provided

directly to the master filter along with the solutions of the local filters.

The equivalent centralized filter solution is represented by the covariance matrix

P and state vector x̂. Similarly, the local filter solutions are represented by Pl and

x̂l; and the master filter by Pm and x̂m. The index i = 1 . . . n is used to index the

local filters alone, while the index k = 1 . . . n,m is used to index the local filters and

a master filter, where k = m represents the master filter.
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2.7.1 Construction. The formulation in this section is derived from [2]. The

federated filter is constructed such that statistically independent local and master

filter solutions can be combined at any time with the following additive information

algorithm,

P−1 = Pm−1 + P1−1 + . . .+ Pn−1 (2.85)

P−1x̂ = Pm−1x̂m+ P1−1x̂1 + . . .+ Pn−1x̂n (2.86)

where the inverse covariance matrix (P−1) is known as the “information matrix”.

Proper construction of the federated filter is accomplished by applying a fraction

of the total information to each local filter and the master filter,

Pk−1 = P−1 βk or P = P β−1
k (2.87)

while maintaining constant total information across the sum to satisfy the conserva-

tion of information principle. Therefore, the share-fraction values (βk) must sum to

unity:
n,m
∑

k=1

βk = βm +
n

∑

i=1

βi = 1 (2.88)

The share-fraction values (βk) are only applied to the information, therefore,

the local and master filter state vectors are equal to the total state vector.

x̂k = x̂ (2.89)

Application of the local and master filter solutions given by (2.87) and (2.89)

to the additive information algorithm (2.85) demonstrates the local and master filter
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solutions can be combined to yield the correct total solution. (P, x̂).

P−1 = Pm−1 + P1−1 + . . .+ Pn−1 (2.90)

= P−1 βm + P−1 β1 + . . .+ P−1 βn (2.91)

= P−1

n,m
∑

k=1

βk (2.92)

= P−1 (2.93)

P−1x̂ = Pm−1x̂m+ P1−1x̂1 + . . .+ Pn−1x̂n (2.94)

= P−1 βmx̂ + P−1 β1x̂ + . . .+ P−1 βnx̂ (2.95)

= P−1x̂

n,m
∑

k=1

βk (2.96)

= P−1x̂ (2.97)

When the common process noise information is divided in the same fashion, the

discrete time propagation process can be performed by independent, parallel opera-

tions of the local and master filters.

2.7.2 Propagation. The local and master filters are propagated, in parallel,

provided the common process noise information is divided in the same fashion as the

information matrix. The covariance propagation equations from time t− 1 to t are:

Pkt = Φkt Pk(t−1) ΦkT
t + Gkt Qkt GkT

t (2.98)

Assuming the local and master filters are full-sized, the transition matrices Φk

equal Φ, and the noise distribution matrices Gk equal G. However, the process noise

covariance matrices Qk are governed by the information-sharing principle.

Qk−1 = Q−1 βk or Q = Q β−1
k (2.99)
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The post-propagation information matrix can be obtained through the additive

information algorithm, when the information matrices are obtained through (2.87),

and the noise information matrices are obtained through (2.99).

n,m
∑

k=1

Pk−1 =
∑

k

[

Φt P(t−1) βk
−1 ΦT

t + Gt Qt βk
−1 GT

t

]−1
(2.100)

=

[

n,m
∑

k=1

βk

]

[

Φt P(t−1) ΦT
t + Gt Qt GT

t

]−1
(2.101)

= P−1 (2.102)

2.7.3 Measurement Update. After propagation each local filter incorporates

discrete measurements z̃i from its sensor. Measurement information is added to local

filter i through,

Pi−1
+ = Pi−1 + Hi Ri−1 HiT (2.103)

Pi−1
+ x̂i+ = Pi−1 x̂i+ Hi Ri−1 z̃i (2.104)

where the subscript + refers to posts measurement values, Ri−1 is the local filter

measurement information matrix and Hi = (δzi/δxi)T .

Using the additive information algorithm to combine the results of local filter

measurement updates provides the correct total solution,

Pm−1 +
n

∑

i=1

[

Pi−1 + Hi Ri−1 HiT
]

(2.105)

= P−1 +
n

∑

i=1

Hi Ri−1 HiT (2.106)

= P−1
+ (2.107)

33



and,

Pm−1 x̂m+
n

∑

i=1

[

Pi−1 x̂i+ Hi Ri−1 z̃i
]

(2.108)

= P−1 x̂ +
n

∑

i=1

Hi Ri−1 z̃i (2.109)

= P−1
+ x̂+ (2.110)

Thus the federated filter provides a solution which would be achieved by a

single filter processing all of the sensor measurement sets. However, the federated

filter implementation of information sharing provides three advantages over a single

filter implementation [2]:

• increased measurement data throughput by parallel operation of local filters,

and by data compression within local filters;

• enhanced system fault-tolerance by maintaining multiple component solutions

to improve fault detection and recovery capabilities; and

• improved accuracy and stability of cascaded filter operations, via use of theo-

retically correct estimation algorithms.

2.7.4 Filter Reset. Finally, the federated filter may be implemented using

one of four different local filter reset architectures [3]. The four architectures, also

know as reset modes, are 1) no-reset, 2) fusion-reset, 3) zero-reset, and 4) rescale.

In the no-reset mode, the local filters operate autonomously while maintaining

the long-term information of the navigation system. The master filter fuses the local

filter solutions at each time step and propagates the fused solution to the next time

step. The master filter discards the propagated solution prior to fusing the next set

of local filter solutions.

The local filters retain the long-term system information in the fusion-reset

mode, but do not operate autonomously as in the no-reset mode. In this mode the
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master filter divides the fused information and applies an equal share to each of the

local filters. Each local filter begins the next cycle with the same information as the

other filters. Therefore, the weaker local filters gain information from the stronger

filters, which may help constrain the weaker filters.

In the zero-reset mode the long-term system information storage is transfered to

the master filter. Each local filter acts as a integrate-and-dump filter compressing it’s

sensor measurements into a single solution. After the local filters send their solutions

to the master filter, they reset themselves to zero information. This ensures the next

set of inputs contain no old information.

The rescale mode is similar to the zero-reset mode, except the local filters send

half of their information to the master filter. Additionally, the local filters reset their

information to one-half instead of zero after sending the solution. This mode allows

the local filters to retain enough information to make the filter locally usable in the

event of failure.

2.8 Multiple Vehicles

In this section, two approaches to cooperative multiple platform navigation are

discussed and analyzed. Additional approaches to multiple platform navigation may

be found in [1, 8, 11,16,17].

2.8.1 Sanderson. In [18] Sanderson proposes a CNS based on the appli-

cation of inter-platform range measurements to a linear Kalman filter. The use of

such range measurements requires each platform to estimate the position of all other

platforms to which it performs a range measurement. This poses a problem during

the propagation step of the Kalman filter as each platform does not have implicit

knowledge of the trajectory of the other platforms. Sanderson mitigates this problem

by pre-programming each platform with a trajectory consisting of a series of desire

positions. At each time step the platforms transmit their next desired position so the

other platforms may properly propagate the position estimate.
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Sanderson demonstrates the the validity of the CNS with three, 10 run, ex-

periments using two robots traveling in parallel along a 10m long straight path. In

the first experiment to two robots do not cooperate, resulting in an average error of

approximately 10 cm at the end of the 10m run. The second experiment is performed

with the robots cooperating, resulting in an average error less than 10 cm at the end

of the run. In both of these cases the position estimate is diverging from truth at

the end of the run. Finally, the third experiment uses the CNS with the addition of

one of the robots following a wall at a set distance. This results in a less than 1cm

average error for the robot which is not following the wall.

The CNS developed by Sanderson was created for the navigation of platforms

constrained to a two-dimensional surface. However, the concepts used in the CNS

development may be extrapolated to three dimensions. A major limiting factor in the

use of this system for large numbers of platforms is the requirement for each platform

to estimate the other platforms positions. This requirement increases the number

of states in the Kalman filter and will therefore increase the processing time of the

system with increased numbers of platforms.

2.8.2 Panzieri, Pascucci and Setola. In [15] Panzieri, Pascucci and Setola

circumvent the problems with large state vectors, due to the number of platforms

in the network, by implementing a CNS using an interlaced Kalman filter. Using

this method each platform only estimates its own pose and shares estimated posi-

tions and covariances when in communication range of other platforms. Additionally,

when platforms are close enough, range measurements may be incorporated into the

solution.

The CNS is demonstrated using five Matlabr simulations. The simulations

consist of 10 platforms operating within a 12×12 arena which includes nine landmark

beacons. The five simulations progress from a complete non-cooperative system to

a full system capable of communication between platforms and all of the landmark
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beacons. Over the simulations the mean position error of the 10 platforms is reduced

from 2m, for the non-cooperative system, to less than 2 cm for the full CNS.

The CNS system developed by Panzieri, Pascucci and Setola demonstrates the

ability of a interlaced Kalman filter approach to reduce the state vector of a platform,

increasing the rate at which the solution is computed.

In both approaches to the CNS developed utilize only information pertaining to

the condition of the platforms. In the next chapter, vision-aiding of an INS is extended

to use with multiple platforms cooperating to improve the navigation solution of the

group.
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III. Methodology

T
his chapter fully develops two methods for the implementation of the multiple

vehicle, cooperative, vision-aided navigation system. The chapter begins with

an overview of the multiple platform federated filter and describes the differences

between the two methods of implementation. Next, a new approach of local filter

scaling is discussed to simplify the development of the primary local filter implemented

in the first method. Then, the primary local filter is defined followed by descriptions

of the landmark extraction and matching algorithms. Next, the range measurement

algorithm is developed followed by the formation of the secondary local filter function.

Finally, the fusion algorithm which comprises the master filter is developed.

3.1 Multiple Platform Federated Filter

The federated filter as developed in Section 2.7 is designed for the express pur-

pose of fusing navigation solutions from multiple local-level filters on a single platform

utilizing multiple sensor measurements. The federated filters developed for this re-

search operate in the same manner, differing only in the source of sensor measurements

for the secondary local filter.

The first method of implementation, designated the “post-scaling” method and

shown in Figure 3.1, is developed to utilize the algorithms developed by Veth, as

detailed in Section 2.6, with minimal modification. The objective of this method

is to implement these algorithms in the primary local filter with no modifications.

As the covariance matrix is pre-scaled in a federated filter, this method requires the

development of a new way to scale the covariance matrix, after the propagation and

measurement update of the Kalman filter.

The second method of implementation, designated the “pre-scaling” method and

shown in Figure 3.2, modifies the algorithms developed by Veth. These modifications

allow for the pre-scaling of the covariance matrix, and operation of the filter for a

single time step.
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Figure 3.1: Platform Block Diagram (Method 1): The primary local filter (green)
receives measurements from on-board sensors. The secondary local local filter (yellow)
receives measurements from remote platforms through the extraction and matching
functions. The master filter (blue) scales the outputs and fuses the results of the two
local filters to provide a total system solution.

The basic structure of the navigation system is the same regardless of the method

of implementation. The system consists of a primary and secondary local filter, a

landmark extraction algorithm, a landmark matching algorithm, and a master filter.

The most significant difference between the two methods of implementation is

when the local filter solutions are scaled. The post-scaling method, shown in Fig-

ure 3.1, performs local filter scaling in the master filter prior to fusion of the local

solutions. In Figure 3.2 the scaling block is removed as the pre-scaling method scales

the local filters during the initialization of the primary filter.
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Figure 3.2: Platform Block Diagram (Method 2): The primary local filter (green)
receives measurements from on-board sensors. The secondary local local filter (yellow)
receives measurements from remote platforms through the extraction and matching
functions. The master filter (blue) fuse the results of the two local filters to provide
a total system solution.

In the next section, the new local scaling method is developed for the imple-

mentation of the post-scaling navigation system method.

3.2 Local Filter Scaling

To utilize the navigation filter developed by Veth, without major modifications

to scale the covariance matrices, a new scaling method is developed. The formation of

this new scaling method begins with the definitions of the local covariance matrices,
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at any time t, provided in [3],

Plt =





PCt γpcl 0

0 PBt γpbl



 (3.1a)

Qlt =





QCt γpcl 0

0 QBt γpbl



 (3.1b)

Rlt =





RCt γpcl 0

0 RBt γpbl



 (3.1c)

where (Plt, Qlt, Rlt) are the covariance matrices of the local filter, (PCt, QCt, RCt)

are the portions of the full system covariance matrices common to all of the local filters,

(PBt, QBt, RBt) are the portions of the full system covariance matrices unique to the

local filter, and (γpcl, γpbl) are the federated filter, covariance mode, scaling parameters.

The full state estimate vector is divided into two categories: common states,

and unique states. Common states are those states estimated by all local filters, while

unique states are estimated only by the local filter which performs a measurement of

the state.

The primary and secondary local filters in Figure 3.1 share all of the system

states. With no unique states in either of the local filters, the scaling parameters

are equal, and γpl = γpcl = γpbl. The scaling parameter (γpl) is extracted from the

matrices and the local filter covariances become:

Plt = γpl Pt (3.2a)

Qlt = γpl Qt (3.2b)

Rlt = γpl Rt (3.2c)

The two local filters share all of the states for which measurements are available,

therefore, the measurement noise covariance (Rt) must be scaled as well as the process

(Pt) and process noise (Qt) covariances.

41



The local filter state vector and process covariance are initialized, in covariance

mode, as defined in [3].

xl+t = x+
t (3.3)

Pl+t = γpl P+
t (3.4)

where t is equal to zero for initialization.

As shown in [2] the state and noise transformation matrices do not require

scaling.

Φlt = Φt (3.5)

Glt = Gt (3.6)

The states are propagated as follows:

xl−t = Φlt xl+(t−1) (3.7)

Substituting (3.3) and (3.5) into (3.7) then solving for xl−t provides,

xl−t = Φt x+
(t−1) (3.8)

= x−

t (3.9)

Next, the covariance matrix is propagated,

Pl−t = Φlt Pl+(t−1) ΦlTt + Glt Qlt GlTt (3.10)
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Substituting (3.2a), (3.2b) and (3.6) into (3.10) then solving for Pl−t provides,

Pl−t = Φt γpl P+
(t−1) ΦT

t + Gt γpl Qt GT
t (3.11)

= γpl (Φt P+
(t−1) ΦT

t + Gt Qt GT
t ) (3.12)

= γpl P−

t (3.13)

Therefore, the state vector and process covariance may be propagated from

one time step to the next, and the scaling factor applied after the propagation is

complete. However, the new scaling method must continue through the measurement

update process to be useful.

As demonstrated in [2] the measurement transformation matrix is not scaled.

Hlt = Ht (3.14)

With the measurement transformation matrix (3.14) and process covariance

matrix (3.11) defined, the Kalman gain is computed,

Klt = Pl−t HlTt
(

Hlt Pl−t HlTt + Rlt
)−1

(3.15)

Substituting (3.2c), (3.11) and (3.14) into (3.15) then solving for Klt provides,

Klt = γpl P−

t HT
t

(

Ht γpl P−

t HT
t + γpl Rt

)−1
(3.16)

= γpl P−

t HT
t

1

γpl

(

Ht P−

t HT
t + Rt

)−1
(3.17)

= P−

t HT
t

(

Ht P−

t Htk
T + Rt

)−1
(3.18)

= Kt (3.19)

This computation of the Kalman gain is only valid if the measurement noise

covariance (Rt) is scaled identically to the process (Pt) and process noise (Qt) covari-
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ances. Otherwise, the scaling parameters will not cancel and the local filter Kalman

gain requires pre-scaling.

As with the state vector and measurement transformation matrix, the measure-

ment vector does not require scaling.

zlt = zt (3.20)

The measurement update of the state is:

xl+t = xl−t + Klt
(

z̃lt − HlTt xl−t
)

(3.21)

Substituting (3.8), (3.16), (3.20) and (3.14) into (3.21) then solving for xl+t

provides,

xl+t = x−

t + Kt

(

z̃t − HT
t x−

t

)

(3.22)

= x+
t (3.23)

Finally, the process covariance is updated,

Pl+t = Pl−t − Klt HlTt Pl−t (3.24)

Substituting (3.11), (3.16), and (3.14) into (3.24) then solving for Pl+t provides,

Pl+t = γpl P−

t − Kt HT
t γpl P−

t (3.25)

= γpl

(

P−

t − Kt HT
t P−

t

)

(3.26)

= γpl P+
t (3.27)

Therefore, the measurement update of the state vector and process covariance

does not require pre-scaling of the process covariance. This result allows for a set of
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local filters to run independently without scaling the information applied to them.

Samples are taken from the local filters as needed and scaled prior to fusion by the

master filter.

3.3 Primary Local Filter

The primary local filter implements the navigation system developed by Veth,

as described in Section 2.6. Measurements to the filter are provided by the onboard

vision system.

3.3.1 Post-Scaling. The only modification to the algorithm, to implement

the post-scaling method, is the addition of a single function to extract the initial

covariance related to a landmark when a new landmark is added to the navigation

state. This function is applied to both methods and is detailed in Section 3.3.3. The

resulting state and process covariance of the primary filter are scaled in the master

filter prior to fusion.

3.3.2 Pre-Scaling. The pre-scaling method makes three modifications to

the original Veth algorithm. First, the initial covariance related to a landmark is

extracted in the same manner as in the post-scaling method. Next, the process (P )

and processed noise (Q) covariances are scaled by the scaling factor (γ). The scaling

factor is 2 when the navigation system is run in no-reset mode and 3 in fusion-reset

mode, as described in Section 2.7.4.

The final modification to the Veth implementation is the removal of time loop-

ing. The original code processes the entire simulation in one call of the code and then

provides results for every time step. The modification removes the loop to provide

a result for a single time step. This modification allows for the pre-scaling of the

covariances and operation of the navigation system in one of the reset modes.

3.3.3 Initial Covariance Extraction. Immediately after a landmark is added

to the primary filter, the initial covariance extraction function creates and saves two
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matrices. The first matrix (M) is a mask of the process covariance matrix and consists

of zeros in the three columns and rows pertaining to the added landmark, and ones

elsewhere. The second matrix (L) is a copy of the process covariance matrix with

all values outside of the three columns and rows pertaining to the added landmark

set to zero. These two matrices are computed once for every landmark added to

the primary filter, and are provided to the secondary filter to facilitate resetting the

process covariance when a new landmark match is made.

The output of the primary filter at each time step is now applied to the master

filter and landmark extraction function.

3.4 Landmark Extraction

The landmark extraction function computes the error corrected n-frame posi-

tion of the platform and all landmarks tracked by the primary filter. The function

then extracts the platform position, landmark positions, and all related variances.

Additionally, the token, scale, and rotation data for each landmark is extracted to

facilitate landmark matching.

The first step in the function is to correct the position of the platform and

landmarks by subtracting the pertinent error state from the estimated platform and

landmark position estimates:

pn = p̂n − p̃n (3.28)

yn
k = ŷn

k − ỹn
k (3.29)

where pn is the corrected platform position, and yn
k is the corrected landmark position

for the kth landmark.

Next the covariance of the platform position is extracted from the full navigation

state covariance matrix.

Rpp = Ppp − PpxPxxP
T
px (3.30)
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where Rpp is the resulting covariance, Ppp is the portion of the state covariance related

to the platform position, Pxx is the portion of the state covariance related to all other

states, and Ppx is the portion of the state covariance relating the position to all of

the other states. This result provides the platform position covariance including the

effects of all other states and their related measurements. The platform position and

covariance are extracted for use in the range measurements as detailed in Section 3.6.

Finally, the variances of the landmarks are extracted. The extraction function

used for the platform position is not valid for the landmarks as it will include the

information about the platform position. This information will cause a bias when the

result is applied to a second platform. Therefore, the variance for each landmark is:

Rykyk
= diag(Pykyk

) (3.31)

where k = 1 . . . n is the kth landmark, Rykyk
is the resulting variance, and Pykyk

is

the 3 × 3 portion of the process covariance related to the landmark. Extraction of

the landmark variances by this method is not optimal as information is lost in the

extraction. However, if the information is extracted in an optimal manner and shared

with other platforms, a bias is induced in the position estimate due to the difference

in position of the platforms.

After all required data is extracted from the primary filter the result is trans-

ferred, through communications channels, to all other platforms participating in the

cooperative system.

The next section details the target matching function using the extracted data

from other platforms.

3.5 Target Matching

The landmark matching function provides the secondary local filter with mea-

surements of landmark positions provided by other platforms connected to the coop-

erative navigation system. The landmarks of interest are limited to those tracked by
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the primary local filter. Therefore, this function compares the landmarks sent from

other platforms to those tracked by the primary filter and discards any which do not

match.

A match correlation value (Ajk) is computed for every possible combination of

primary filter landmark (j) and cooperative platform landmark (k). This value is

computed as the arc cosine of the dot product of the SIFT tokens for each primary

filter and cooperative platform landmark combination:

Ajk = arccos(Tj · Tk) (3.32)

where T is the SIFT token of the respective landmarks.

A landmark k is considered a match to landmark j if all of the following three

conditions apply:

1. the correlation for landmark k is the smallest of all correlations computed for

landmark j,

2. the correlation for landmark k is larger than the sift minimum correlation value,

and

3. the correlation for landmark k is smaller than the second smallest correlation

multiplied by the sift feature distinction value.

When landmark matching his complete the results are applied as measurements

to the secondary local filter along with range measurements when available.

3.6 Range Measurements

In addition to landmark measurements, the secondary local filter may receive

range measurements to other platforms cooperating in the navigation system. A

measurement update requires three variables; the measurement, an error state to

measurement state transformation matrix, and measurement covariance. The mea-

surement is the direct output of the measurement device, while the transformation
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matrix and covariance are calculated from the position and covariance of the two

platforms involved.

A measurement of the range between two platforms (z), regardless of the mea-

surement device, is the root-sum-squared (RSS) difference in position (p) of the two

platforms plus a measurement error (v):

z = |∆pab| + v (3.33)

= |pa − pb| + v (3.34)

and may be expressed as an error measurement by:

δz =
[

Haa Hab

]





δpa

δpb



 + v

= Haaδpa + Habδpb + v (3.35)

where a represents the platform performing the measurement, b represents the plat-

form to which the measurement is made, Haa is the transformation matrix from the

state space of platform a to the measurement space of platform a, and Hab is the

transformation matrix from the state space of platform b to the measurement space

of platform a.

The measurement and remote platforms each provide an estimate of their re-

spective position. When these estimates are applied to equation (3.34),

z̃ = |pn
a − pn

b | + v (3.36)

=
√

(xa + xb)2 + (ya + yb)2 + (za + zb)2 + v (3.37)
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the range measurement is equal to the estimated range plus the measurement error.

Therefore, the estimated range is:

z̄ =
√

(xa + xb)2 + (ya + yb)2 + (za + zb)2 (3.38)

The error to measurement state transformation matrices are calculated from the

partial derivatives of the range estimate with respect to the position coordinates of

each platform.

Haa =

[

∂z̄

∂xa

∂z̄

∂ya

∂z̄

∂za

]∣

∣

∣

∣

x=x̃

(3.39)

Hab =

[

∂z̄

∂xb

∂z̄

∂yb

∂z̄

∂zb

]∣

∣

∣

∣

x=x̃

(3.40)

The partial derivative of the range estimate with respect to the x coordinate of

platform a is the difference between the two platform x coordinates divided by the

range estimate;

∂z̄

∂xa

∣

∣

∣

∣

x=x̃

=
xa − xb

√

(xa + xb)2 + (ya + yb)2 + (za + zb)2
=
xa − xb

z̄
(3.41)

and the calculations for the remaining partial derivatives for platform a are similar;

∂z̄

∂ya

∣

∣

∣

∣

x=x̃

=
ya − yb

z̄
(3.42a)

∂z̄

∂za

∣

∣

∣

∣

x=x̃

=
za − zb

z̄
(3.42b)
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while the partial derivatives for platform b are the negative of the corresponding

partial derivatives for platform a;

∂z̄

∂xb

∣

∣

∣

∣

x=x̃

=
xb − xa

z̄
(3.42c)

∂z̄

∂yb

∣

∣

∣

∣

x=x̃

=
yb − ya

z̄
(3.42d)

∂z̄

∂zb

∣

∣

∣

∣

x=x̃

=
zb − za

z̄
(3.42e)

The final variable needed for a range measurement is the measurement covari-

ance. As the state estimates the position error of platform a, the error of the mea-

surement device is redefined as:

v∗ = Habδpb + v (3.43)

and the error measurement becomes:

δz̃ = Haaδpa + v∗ (3.44)

The error measurement covariance is computed as the expected value of the

measurement device error:

R∗ = E
[

v∗v∗
T
]

= E
[

Habδpbp
T
b HT

ab + Habpbv + vTpT
b HT

ab + vvT
]

(3.45)

= HabE
[

pbp
T
b

]

HT
ab + 0 + 0 + E[vvT ] (3.46)

= HabRpbpb
HT

ab +R (3.47)

The next section develops the secondary local filter algorithm using the matched

landmark and possible range measurements.
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3.7 Secondary Local Filter

The secondary local filter provides a platform with the ability to incorporate

information about landmarks viewed by remote platforms and the relative positioning

of platforms cooperating in the navigation system. The filter calculates the error state

to measurement state transformation matrix, measurement covariance, and residuals

then performs a measurement update.

The filter is simply the measurement update step of an EKF and operates as

described in Section 2.5 with one addition. Whenever a new landmark match is added

to the measurement state of the filter, the process covariance must be reset to an initial

condition. This procedure is performed by multiplying the process covariance matrix

by the mask matrix, provided by the primary filter, and then adding the initialization

matrix:

Pi = PoM + L (3.48)

where Pi is the covariance matrix after landmark initialization, Po is the covariance

matrix before landmark and initialization, M is the masked matrix, and L is the

initialization matrix. The secondary local filter does not perform the propagation step

of an EKF as the propagation is accomplished by the primary filter of the platform

providing the measurement. Performing a second propagation will increase the error

in the state estimate.

When the filter completes a measurement update the results are sent to the

master filter for fusion with the primary filter results.

3.8 Master Filter

The master filter is designed to fuse the results of the primary and secondary

filters. The implementation of the master filter is dependent on the method of imple-

mentation of the federated filter, as discussed in Section 3.1, and the federated filter

reset mode. The filter scales the process covariances, as required by the implemen-
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tation method; fuses the error states and process covariances; and resets all platform

filters, as required by the reset mode.

3.8.1 Covariance Scaling. Scaling of the process covariances is performed

only when the post-scaling method is implemented. The scaling is accomplished by

multiplying the process covariances of the primary and secondary filters by the scaling

factor (γ):

Ps
p = γ Pp (3.49)

Ps
s = γ Ps (3.50)

where the superscript s indicates the scaled covariance, subscript p indicates the

primary filter, and subscript s indicates the secondary filter.

3.8.2 Information Fusion. Information fusion is performed using the infor-

mation form of federated filter as this form is the simplest to implement and does not

slow down the processing of the filter. Applying the additive information algorithm

(2.85), presented in Section 2.7.1, provides:

P−1 = P−1
m + P−1

p + P−1
s (3.51)

P−1x̂ = P−1
m x̂m + P−1

p x̂p + P−1
s x̂s (3.52)

when the filter is operated in fusion-reset mode, and:

P−1 = P−1
p + P−1

s (3.53)

P−1x̂ = P−1
p x̂p + P−1

s x̂s (3.54)

in no-reset mode. The subscripts m, p, and s represent the master, primary, and

secondary filters respectively.
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The covariance (P) is calculated simply by inverting the information matrix

(P−1). However, the error state vector (x̂) is found by pre-multiplying the results by

the covariance;

x̂ = P
(

P−1x̂
)

(3.55)

3.8.3 Filter Reset. The results of the information fusion are scaled and

applied to the filters differently depending on the reset mode of operation.

For the no-reset mode the scaling parameter γ = 1 and the master filter is the

only filter reset. In this mode the master filter only fuses the information provided

by the primary and secondary filters and does not retain any information beyond the

current time step. A failure or lack of measurements in the secondary filter causes

the overall results to be identical to the original non-cooperative system.

The fusion-reset mode uses a scaling parameter γ = 3 and applies the results

to all three filters. As a result each filter retains a portion of the information and the

primary filter gains information improving the overall results if the secondary filter

fails or does not receive measurements.

In the next chapter the multiple platform, cooperative navigation system devel-

oped here is validated using Monte Carlo simulation.
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IV. Simulation Results and Observations

T
he cooperative, vision-aided navigation system, developed in Chapter III, is eval-

uated using Matlabr simulation and an incremental verification philosophy is

applied to demonstrate the accuracy of the system. This chapter begins with a de-

scription of the filter setup, which is common to both implementation methods. The

remainder of the chapter is sectioned into separate analyses of the post-scaling and

pre-scaling methods presented in Section 3.1. Additionally, each section is divided

into separate discussions of the simulation scenarios applied to the individual imple-

mentation methods.

All of the results presented in this chapter are for the first platform in the coop-

erative system. The results for additional platforms are presented in Appendices A-E.

4.1 Filter Setup

In this section the filter implementation common to all simulations is described.

4.1.1 Primary Filter. The primary local filter is implemented as an extended

Kalman filter and estimates 15 platform states and 36 landmark states. The 15

platform states are composed of three states each representing the position, velocity,

attitude, accelerometer biases, and a gyroscope biases. The 36 landmark states are

composed of three position states for each of 12 landmarks tracked and estimated by

the system.

Measurements are provided to the filter from a binocular vision system and are

comprised of landmark positions within an image. The addition of new landmarks is

limited to six landmarks per image. When the vision system is no longer able to find

a tracked landmark, the corresponding states are propagated for one second before a

new landmark is selected and tracked.

4.1.2 Secondary Filter. The secondary local filter is implemented as the

measurement update step of a Kalman filter and estimates the same 51 platform and
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landmark states as the primary local filter. The federated filter allows the secondary

filter to estimate additional landmark states, corresponding to extra landmark mea-

surements from a second platform. However, this ability is not implemented as it

requires adaptive scaling of the local filter information matrices and the master state

vector and information matrix.

Landmark measurements are provided to the filter from other platforms and are

limited to the 12 landmarks tracked by the primary filter.

Range measurements, between platforms, are generated as the actual distance

between the platforms with an added random Gaussian error with:

µ = 0m (4.1)

σ = 5 cm (4.2)

The generated range measurements are not representative of any specific ranging

sensor, and are adjusted to fit the scale used in the simulation scenarios.

4.1.3 Master Filter. The master filter estimates all of the states estimated

by either of the local filters. As the secondary local filter is estimating the same states

as the primary, the master filter state vector is composed of the same 51 states.

The local filter covariances are inverted to information matrices prior to fu-

sion. This allows for simpler implementation with the greatly reduced possibility of

implementation or coding errors.

4.2 Method 1: Post-Scaling

The post-scaling method, developed in Section 3.1, is simulated as a simple case

comprised of two stationary platforms. Both platforms are placed along the east-

west axis, 1m west and 1m east of the n-frame origin respectively. Thirty features,

normally distributed in each direction, are centered about the coordinate [10, 0, 0]T
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with a standard deviation of 3m. Figure 4.1 depicts the simulation scenario. The 50

run Monte Carlo simulation is performed over 200 s at a 2Hz sampling rate.

The position, velocity and attitude errors relating to the n-frame north, east,

and down directions are shown in Figures 4.2-4.10. As expected, the vision-aiding sys-

tem constrains the drift of the INS. However, comparison of the cooperative systems

to the non-cooperative system is difficult using separate plots of the errors. Therefore,

the root-mean-squared (RMS) position, velocity and attitude errors are computed to

provide one-dimensional metrics for the comparison of the three systems. The RMS

errors are shown in Figures 4.11-4.21.

Using the post-scaling method to implement the cooperative systems displays no

improvement of the navigation solution over the non-cooperative system. This simu-

lation computes the solution of the primary filter at every time step prior to applying

the results to the secondary and master filters. Therefore, there is no mechanism

for applying the information, provided by additional platforms, to the primary filter.

Without the addition of external information the system reverts to a non-cooperative

state. This results is caused by either the predetermination of the primary result at

every time step or subtle coding errors in the simulation.

The pre-scaling simulation overcomes the limitations of the post-scaling simula-

tion by computing a total solution at each time step prior to continuing to the next.

The results of this method are presented in the next section.
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Figure 4.1: Two platform stationary simulation scenario using the post-scaling
method. The platforms are each positioned 1m from the origin (red lines) along
the east-west axis. Thirty random features (blue asterisk) are positioned around the
coordinate [10, 0, 0]T .
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(a) Non-Cooperative Simulation
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(b) Cooperative Simulation without Ranging
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(c) Cooperative Simulation with Ranging

Figure 4.2: Simulated 50-run Monte Carlo position error results along the north axis
of the local navigation frame. The results shown are for the first of two stationary
platforms simulated using three system implementations of the post-scaling method:
1) non-cooperative (top), 2) cooperative without range measurements (middle), and
3) cooperative with range measurements (bottom). The position errors of each run
are represented by the blue dotted lines. The ensemble mean is indicated by the green
line while the ensemble standard deviation is indicated by the red lines.
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(c) Cooperative Simulation with Ranging

Figure 4.3: Simulated 50-run Monte Carlo position error results along the east axis
of the local navigation frame. The results shown are for the first of two stationary
platforms simulated using three system implementations of the post-scaling method:
1) non-cooperative (top), 2) cooperative without range measurements (middle), and
3) cooperative with range measurements (bottom). The position errors of each run
are represented by the blue dotted lines. The ensemble mean is indicated by the green
line while the ensemble standard deviation is indicated by the red lines.
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(a) Non-Cooperative Simulation
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(b) Cooperative Simulation without Ranging
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Figure 4.4: Simulated 50-run Monte Carlo position error results along the down axis
of the local navigation frame. The results shown are for the first of two stationary
platforms simulated using three system implementations of the post-scaling method:
1) non-cooperative (top), 2) cooperative without range measurements (middle), and
3) cooperative with range measurements (bottom). The position errors of each run
are represented by the blue dotted lines. The ensemble mean is indicated by the green
line while the ensemble standard deviation is indicated by the red lines.
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(a) Non-Cooperative Simulation
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(b) Cooperative Simulation without Ranging
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Figure 4.5: Simulated 50-run Monte Carlo velocity error results along the north axis
of the local navigation frame. The results shown are for the first of two stationary
platforms simulated using three system implementations of the post-scaling method:
1) non-cooperative (top), 2) cooperative without range measurements (middle), and
3) cooperative with range measurements (bottom). The velocity errors of each run
are represented by the blue dotted lines. The ensemble mean is indicated by the green
line while the ensemble standard deviation is indicated by the red lines.

62



0 20 40 60 80 100 120 140 160 180
−0.1

−0.05

0

0.05

0.1

E
as

t 
V

el
o

ci
ty

 E
rr

o
r 

(m
/s

)

Time (s)

(a) Non-Cooperative Simulation
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(b) Cooperative Simulation without Ranging
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(c) Cooperative Simulation with Ranging

Figure 4.6: Simulated 50-run Monte Carlo velocity error results along the east axis
of the local navigation frame. The results shown are for the first of two stationary
platforms simulated using three system implementations of the post-scaling method:
1) non-cooperative (top), 2) cooperative without range measurements (middle), and
3) cooperative with range measurements (bottom). The velocity errors of each run
are represented by the blue dotted lines. The ensemble mean is indicated by the green
line while the ensemble standard deviation is indicated by the red lines.
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(a) Non-Cooperative Simulation
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(b) Cooperative Simulation without Ranging
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(c) Cooperative Simulation with Ranging

Figure 4.7: Simulated 50-run Monte Carlo velocity error results along the down axis
of the local navigation frame. The results shown are for the first of two stationary
platforms simulated using three system implementations of the post-scaling method:
1) non-cooperative (top), 2) cooperative without range measurements (middle), and
3) cooperative with range measurements (bottom). The velocity errors of each run
are represented by the blue dotted lines. The ensemble mean is indicated by the green
line while the ensemble standard deviation is indicated by the red lines.
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(a) Non-Cooperative Simulation
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(b) Cooperative Simulation without Ranging
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Figure 4.8: Simulated 50-run Monte Carlo attitude error results about the north axis
of the local navigation frame. The results shown are for the first of two stationary
platforms simulated using three system implementations of the post-scaling method:
1) non-cooperative (top), 2) cooperative without range measurements (middle), and
3) cooperative with range measurements (bottom). The attitude errors of each run
are represented by the blue dotted lines. The ensemble mean is indicated by the green
line while the ensemble standard deviation is indicated by the red lines.
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(a) Non-Cooperative Simulation
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(b) Cooperative Simulation without Ranging
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(c) Cooperative Simulation with Ranging

Figure 4.9: Simulated 50-run Monte Carlo attitude error results about the east axis
of the local navigation frame. The results shown are for the first of two stationary
platforms simulated using three system implementations of the post-scaling method:
1) non-cooperative (top), 2) cooperative without range measurements (middle), and
3) cooperative with range measurements (bottom). The attitude errors of each run
are represented by the blue dotted lines. The ensemble mean is indicated by the green
line while the ensemble standard deviation is indicated by the red lines.
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(a) Non-Cooperative Simulation
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(b) Cooperative Simulation without Ranging
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(c) Cooperative Simulation with Ranging

Figure 4.10: Simulated 50-run Monte Carlo attitude error results about the down axis
of the local navigation frame. The results shown are for the first of two stationary
platforms simulated using three system implementations of the post-scaling method:
1) non-cooperative (top), 2) cooperative without range measurements (middle), and
3) cooperative with range measurements (bottom). The attitude errors of each run
are represented by the blue dotted lines. The ensemble mean is indicated by the green
line while the ensemble standard deviation is indicated by the red lines.
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Figure 4.11: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the north axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure 4.12: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the east axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure 4.13: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the down axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure 4.14: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute posi-
tion error results. The results shown are for the first of two stationary platforms sim-
ulated using three system implementations: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red). Note: the three system results presented here are identical due to the method
used to implement the primary filter.
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Figure 4.15: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the north axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure 4.16: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the east axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure 4.17: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the down axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure 4.18: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute ve-
locity error results . The results shown are for the first of two stationary platforms
simulated using three system implementations of the post-scaling method: 1) non-
cooperative (blue), 2) cooperative without range measurements (green), and 3) co-
operative with range measurements (red). Note: the three system results presented
here are identical due to the method used to implement the primary filter.
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Figure 4.19: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the north axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure 4.20: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the east axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure 4.21: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the down axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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4.3 Method 2: Pre-Scaling

The pre-scaling algorithm, developed in Section 3.1, is implemented using four

simulation scenarios: 1) two stationary platforms, 2) two platforms passing through

a 25m long hallway, 3) two platforms orbiting a point in space, and 4) two platforms

performing a 360◦ yaw in a 10m radius circular room.

4.3.1 Stationary Platforms. The first simulation performed with the pre-

scaling algorithm repeats the simulation performed using the post-scaling method.

Figure 4.1 depicts the simulation scenario. The 50 run Monte Carlo simulation is

performed over 200 s at a 2Hz sampling rate.

The RMS errors for the stationary platform simulation are shown in Figures 4.22-

4.32. As expected, the cooperative systems reduce the error of the navigation solution

position and velocity. Additionally, the inclusion of ranging information reduces the

error more than the standard cooperative system. Figure 4.25 provides a single indica-

tor of the overall position performance of the filters. The cooperative systems reduce

the absolute position error by approximately 0.5 cm without ranging information and

1 cm with ranging.

The cooperative systems do not improve the attitude error, as seen in Fig-

ures 4.30-4.32, and this additional error is due to the unchanging pose of the two

platforms. The cooperative systems increase the attitude errors by as much as 0.01

radians, or 6◦, in any one direction. The reasons for the added attitude error and a

technique to correct it are discussed in Section 4.3.5.
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Figure 4.22: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the north axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure 4.23: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the east axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure 4.24: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the down axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure 4.25: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute po-
sition error results. The results shown are for the first of two stationary platforms
simulated using three system implementations of the pre-scaling method: 1) non-
cooperative (blue), 2) cooperative without range measurements (green), and 3) coop-
erative with range measurements (red).
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Figure 4.26: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the north axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure 4.27: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the east axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure 4.28: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the down axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure 4.29: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute ve-
locity error results . The results shown are for the first of two stationary platforms
simulated using three system implementations of the pre-scaling method: 1) non-
cooperative (blue), 2) cooperative without range measurements (green), and 3) coop-
erative with range measurements (red).
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Figure 4.30: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the north axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure 4.31: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the east axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure 4.32: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the down axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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4.3.2 Hallway. The second simulation, using the pre-scaling algorithm, is

designed to simulate a real-world environment and consists of two platforms traversing

15m of a 25m long simulated hallway. The hallway is 2m wide and 3m tall beginning

5m south of the n-frame origin and and ending 20m north of the origin. Eighty

features are randomly placed along the walls, floor and ceiling of the hallway.

The first platform starts at the coordinate [0,−0.5, 0.5]T , while the second plat-

form starts at [0, 0.5,−0.5]T . Both platforms hold these positions for 80 seconds

and then accelerate to the north 0.025m/s for 15 seconds. Then, at 120 seconds

the platforms accelerate 0.025m/s to the south for another 15 seconds ending at

[15,−0.5, 0.5]T and [15, 0.5,−0.5]T respectively. The platforms then hold these posi-

tions for the remainder of the 200 second simulation. Figure 4.33 depicts the simula-

tion scenario.

The simulation results are shown in Figures 4.34-4.44. As with the stationary

simulation, the attitude errors are increased by the cooperative systems. However,

due to the motion of the platforms beginning at 80 seconds, errors in the north axis

are cross coupled into the east and down axes. This results in error baises, shown in

Figures 4.35 and 4.36, after the platforms traverse the hallway.
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Figure 4.33: Two platform moving platform simulation scenario using the pre-scaling
method. The platforms each travel (black lines) 15m along a 2m wide, 3m tall, and
25m long hallway. Eighty random features (blue asterisk) are positioned randomly
on the walls, floor, and ceiling of the hallway.
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Figure 4.34: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the north axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure 4.35: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the east axis of the local navigation frame. The results shown are for the
first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure 4.36: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the down axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure 4.37: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute po-
sition error results. The results shown are for the first of two platforms, traveling
along a 25m hallway, simulated using three system implementations of the pre-
scaling method: 1) non-cooperative (blue), 2) cooperative without range measure-
ments (green), and 3) cooperative with range measurements (red).
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Figure 4.38: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the north axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure 4.39: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the east axis of the local navigation frame. The results shown are for the
first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure 4.40: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the down axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure 4.41: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute ve-
locity error results . The results shown are for the first of two platforms, travel-
ing along a 25m hallway, simulated using three system implementations of the pre-
scaling method: 1) non-cooperative (blue), 2) cooperative without range measure-
ments (green), and 3) cooperative with range measurements (red).
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Figure 4.42: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the north axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure 4.43: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the east axis of the local navigation frame. The results shown are for the
first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure 4.44: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the down axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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4.3.3 Moving Platforms. The third simulation, using the pre-scaling algo-

rithm, tests the cooperative systems’ abilities to compute solutions of moving plat-

forms. The two platforms perform sideslip orbits of the reference feature cloud. The

sideslip orbit is characterized by the orientation of the platform as it circles a point

in space. At all times the platform is oriented so the x-axis of the body frame of

reference is pointed at the center point of the orbit.

The first platform begins and ends the sideslip orbit 1m above the n-frame

origin and orbits the point at [10, 0,−1]T , counterclockwise, at a constant altitude

of 1m above the n-frame origin. The second platform follows an identical orbital

path 1m below the n-frame origin and starting 45◦ clockwise from the n-frame origin.

Each platform completes one full orbit of the feature cloud over the course of the

simulation.

The simulation utilizes 30 reference features distributed in the same manner as

the stationary simulations performed previously. Figure 4.45 depicts the simulation

scenario. The 50 run Monte Carlo simulation is performed over 200 s at a 2Hz

sampling rate.

The results of the sideslip simulation are shown in Figures 4.46-4.56. As ex-

pected, the position errors are reduced by the cooperative systems. The absolute

position is improved by up to 10 cm depending on the position of the platforms in the

orbit.

This simulation demonstrates how changing the attitude and position, of the

platforms, eliminates the attitude errors displayed by the stationary and hallway

simulations. The reasoning behind this result is discussed in Section 4.3.5.
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Figure 4.45: Two platform moving platform simulation scenario using the pre-scaling
method. The platforms each perform a counterclockwise, sideslip orbit (black lines)
of the central point of the feature cloud at a radius of 10m. The two platforms are
separated 45◦ around the orbit and 1 m above and below the local navigation frame
x-y axis plane. Thirty random features (blue asterisk) are positioned around the
coordinate [10, 0, 0]T .
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Figure 4.46: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the north axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure 4.47: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the east axis of the local navigation frame. The results shown are for
the first of two platforms traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure 4.48: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the down axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure 4.49: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute po-
sition error results. The results shown are for the first of two platforms, traveling
along sideslip orbits around an object, simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure 4.50: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the north axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure 4.51: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the east axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure 4.52: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the down axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure 4.53: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute ve-
locity error results . The results shown are for the first of two platforms, traveling
along sideslip orbits around an object, simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure 4.54: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the north axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure 4.55: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the east axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure 4.56: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the down axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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4.3.4 Yaw. The final pre-scaling simulation is designed to test the effect of

an attitude maneuver, without any position change, to provide observability of the

attitude error states.

The simulation is composed of two platforms positioned 1m above and below

the n-frame origin respectively. The platforms begin the simulation pointed north and

rotate around the down axis counterclockwise, completing one complete rotation over

the 200 s simulation. One hundred fifty reference features are uniformly distributed

around a cylinder, centered on the n-frame origin, with a height and radius of 10m.

Figure 4.57 depicts the simulation scenario.

Figures 4.58-4.68 show the results of this simulation. These results are used,

with the prior simulation results, in the next section to explain the attitude errors in

the stationary and hallway simulations.
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Figure 4.57: Two platform rotation simulation scenario using the pre-scaling method.
The platforms each perform a counterclockwise 360◦ yaw motion over the course of
the 200 s simulation. The two platforms begin and end the simulation heading north,
positioned 1m above and below the local navigation frame origin. One hundred fifty
reference features are uniformly distributed around a cylinder, centered on the origin,
with a height and radius of 10m.
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Figure 4.58: Simulated 50-run Monte Carlo root-mean-squared (RMS) position er-
ror results along the north axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure 4.59: Simulated 50-run Monte Carlo root-mean-squared (RMS) position er-
ror results along the east axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure 4.60: Simulated 50-run Monte Carlo root-mean-squared (RMS) position er-
ror results along the down axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure 4.61: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute po-
sition error results. The results shown are for the first of two platforms, performing
a 360◦ counterclockwise yaw withing a 10m radius circular room, simulated using
three system implementations of the pre-scaling method: 1) non-cooperative (blue),
2) cooperative without range measurements (green), and 3) cooperative with range
measurements (red).
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Figure 4.62: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity er-
ror results along the north axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure 4.63: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity er-
ror results along the east axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure 4.64: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity er-
ror results along the down axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure 4.65: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute ve-
locity error results . The results shown are for the first of two platforms, performing
a 360◦ counterclockwise yaw withing a 10m radius circular room, simulated using
three system implementations of the pre-scaling method: 1) non-cooperative (blue),
2) cooperative without range measurements (green), and 3) cooperative with range
measurements (red).
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Figure 4.66: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude er-
ror results about the north axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure 4.67: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude er-
ror results about the east axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure 4.68: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude er-
ror results about the down axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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4.3.5 Attitude Errors. The results of the four simulations show two factors

combining to cause the increased attitude errors seen in Figures 4.30-4.32 and 4.42-

4.44. These two factors are decreased observability of the platform’s attitude in the

landmark positions, and the scaling of local filters in federated filter.

Figures 4.69-4.71 show the non-cooperative system results from the four simu-

lations performed to verify the operation of the cooperative systems. These results

show a yaw maneuver redicing the pitch and roll attitude errors of the non-cooperative

system. They demonstrate a rotational maneuver improving the attitude error in the

two opposite directions.

These results show attitude maneuvers providing observability of the attitude

in the landmark information. Therefore, in the stationary and hallway simulations,

where no attitude maneuvers are performed, the shared landmark information con-

tains very little attitude information.

The scaling of the local filter information in a federated filter provides the second

factor which increases the attitude errors. Combining the reduced attitude observ-

ability with the local filter scaling mechanism creates the increased attitude errors in

the stationary and hallway simulations. In both simulations the information from the

primary filter is halved and is not compensated by the secondary filter as the land-

mark information from the second platform contains little or no observable attitude

information.

Theses results show how the execution of a yaw maneuver, in the sideslip and

yaw simulations, provides increased attitude information in the shared landmark in-

formation and compensates for the scaling of the primary filter information. However,

these results may be the result of the simulations scenarios and require further inves-

tigation to determine the root cause for the attitude errors.

In the next chapter, conclusions are drawn regarding the performance of the

cooperative systems and recommendations are presented for future implementation

of this research.
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Figure 4.69: Non-cooperative system root-mean-squared (RMS) attitude error results
about the north axis of the local navigation frame. The results shown are for the
stationary (blue), hallway (green), sideslip (red), and yaw (cyan) simulations.
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Figure 4.70: Non-cooperative system root-mean-squared (RMS) attitude error results
about the east axis of the local navigation frame. The results shown are for the
stationary (blue), hallway (green), sideslip (red), and yaw (cyan) simulations.
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Figure 4.71: Non-cooperative system root-mean-squared (RMS) attitude error results
about the down axis of the local navigation frame. The results shown are for the
stationary (blue), hallway (green), sideslip (red), and yaw (cyan) simulations.
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V. Conclusions and Recommendations

T
his thesis details a research effort focused on expanding previous research into

the fusion of optical and inertial sensors for robust, autonomous navigation to

multiple platforms. In this chapter, conclusions regarding the research are presented

and discussed along with recommendations for potential future research.

5.1 Conclusions

The most significant conclusion for this research is the demonstration of the

viability of cooperative, vision-aided navigation using federated filtering techniques.

The goal of this research is the development of a method for sharing landmark infor-

mation, acquired through vision systems, between platforms improving the navigation

solutions. The concept is developed into two possible cooperative navigation systems

and tested using Matlabr simulation.

Both navigation systems utilize a federated filter to incorporate landmark in-

formation, and possibly platform ranging information, from secondary platforms into

a fused total solution. The first system is designed to directly leverage the algorithms

for a single platform vision-aided navigation system without modifications. This sys-

tem requires the implementation of a new federated filter scaling system which allows

for the scaling of the local filters after the propagation and measurement update steps

are performed. The second system is designed to use the single platform algorithms

after modification to allow for a direct implementation of a federated filter.

Simulation of the first navigation system shows no change in the accuracy of

the cooperative system compared to the single platform or non-cooperative system.

The cooperative system is unable to improve on the non-cooperative results due to the

method by which the primary filter is implemented. The primary filter implements the

single platform algorithms without modification. Therefore, the primary filter solution

is computed at every time step before the solution is applied to the master filter. This

prohibits the inclusion of external data into the solution to improve navigation state
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accuracy. Further investigation is required to determine if the post-scaling method

developed in Chapter III is valid.

As expected, simulation of the second cooperative navigation system demon-

strates an ability to reduce the position and velocity errors over a non-cooperative

vision-aided system. However, when no rotational motion is present in the over-

all motion of the platforms, the cooperative systems increase the attitude errors as

demonstrated in Figures 4.30-4.32. This increase of the attitude errors is due to the

scaling of the local filters and reduced observability of the attitude information in the

absence of rotational motion. Additionally, when platform motion is limited to linear

position changes the attitude errors couple the position errors in the direction of mo-

tion to the off axis directions. This phenomenon is demonstrated in Figures 4.34-4.40.

There exist two methods to reduce or overcome the attitude errors caused by

a lack of rotational motion: a) adaptive scaling of the local filters, and b) inducing

rotational motion.

Adaptive scaling of the local filters require using separate scaling parameters for

the platform and landmark portions of the covariance matrix. The scaling parameter

for the platform portion is set to a constant while the scaling parameter for the

landmark portion is adaptively varied dependent on the amount of rotational motion

in the secondary platform. The adaptive scaling method will reduce the amount of

information provided by the secondary platform and increase position errors while

reducing the attitude errors. Additionally, this method is difficult to implement.

The introduction of rotational motion to the cooperating platforms is a much

easier solution to implement. In fact, many real world systems may naturally include

enough rotational motion to counteract the errors shown in the performed simulations.

However, these errors should not be overlooked when designing control systems which

are provided navigation solutions using this cooperative navigation system.
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While the approach developed in this research demonstrates improved perfor-

mance, over non-cooperative navigation systems, there are areas which merit addi-

tional research. These areas are addressed in the next section.

5.2 Recommendations

This section recommends and briefly discusses three areas of possible interest

for future research.

The first area of future research is to investigate the effect of communication

protocols and networking techniques upon the cooperative navigation system. The

research presented in this thesis assumes a common communication protocol and does

not implement any form of networking. Additionally, the simulations performed in

Chapter IV implements the communication between platforms instantaneously. Any

efforts to implement the cooperative navigation system concept on real-world systems

must account for the latency in communications and network topology.

The next area of future research is the further development and implementation

of the concepts developed in this research to real-world systems. This research would

first entail performing new simulations using data collected from real-world systems

to validate the cooperative navigation system concepts with data from real sensors.

Next, the algorithms developed for this research require updates to allow for real-time

implementation. Finally, implementation of the real-time algorithms onto unmanned

vehicles will allow for the experimental validation of this research.

The final area of future research is too further investigate the observability of

attitude information in the landmark data. As discussed in the previous section, the

observability of attitude information in the landmarks is severely reduced when the

platforms do not perform rotational maneuvers. This poses a problem in the cooper-

ative navigation system when linear position errors are increased due to the coupling

of errors between axes. As demonstrated in Section 4.3.2 increased attitude errors

increased the coupling of position errors between axes and reduce the effectiveness of
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the cooperative navigation system. This research would entail investigating the at-

titude observability and determining the optimal means for mitigating the increased

attitude errors.

5.3 Summary

This thesis presented the problem of expanding past research into the coupling of

vision and inertial navigation systems to multiple cooperating platforms. A federated

filter was designed to provide a solution and using Matlabr simulations the validity

of the filter was explored.

The federated filter designed in this thesis is a first step in the development of

a cooperative navigation system utilizing fused vision and inertial sensor data. The

development of such a system has only just begun and, as discussed in the previous

section, there is abundant work required to realize the full potential of this technology.
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Appendix A. Second Platform Simulation Results: Post-scaling

Method - Stationary Simulation
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Figure A.1: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the north axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure A.2: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the east axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure A.3: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the down axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure A.4: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute posi-
tion error results. The results shown are for the first of two stationary platforms sim-
ulated using three system implementations: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red). Note: the three system results presented here are identical due to the method
used to implement the primary filter.
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Figure A.5: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the north axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure A.6: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the east axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure A.7: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the down axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure A.8: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute ve-
locity error results . The results shown are for the first of two stationary platforms
simulated using three system implementations of the post-scaling method: 1) non-
cooperative (blue), 2) cooperative without range measurements (green), and 3) co-
operative with range measurements (red). Note: the three system results presented
here are identical due to the method used to implement the primary filter.
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Figure A.9: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the north axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure A.10: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the east axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Figure A.11: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the down axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the post-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red). Note: the
three system results presented here are identical due to the method used to implement
the primary filter.
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Appendix B. Second Platform Simulation Results: Pre-scaling Method

- Stationary Simulation
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Figure B.1: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the north axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure B.2: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the east axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure B.3: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the down axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure B.4: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute po-
sition error results. The results shown are for the first of two stationary platforms
simulated using three system implementations of the pre-scaling method: 1) non-
cooperative (blue), 2) cooperative without range measurements (green), and 3) coop-
erative with range measurements (red).
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Figure B.5: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the north axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure B.6: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the east axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure B.7: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the down axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure B.8: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute ve-
locity error results . The results shown are for the first of two stationary platforms
simulated using three system implementations of the pre-scaling method: 1) non-
cooperative (blue), 2) cooperative without range measurements (green), and 3) coop-
erative with range measurements (red).
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Figure B.9: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the north axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure B.10: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the east axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure B.11: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the down axis of the local navigation frame. The results shown are for
the first of two stationary platforms simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Appendix C. Second Platform Simulation Results: Pre-scaling Method

- Hallway Simulation
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Figure C.1: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the north axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure C.2: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the east axis of the local navigation frame. The results shown are for the
first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure C.3: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the down axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure C.4: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute po-
sition error results. The results shown are for the first of two platforms, traveling
along a 25m hallway, simulated using three system implementations of the pre-
scaling method: 1) non-cooperative (blue), 2) cooperative without range measure-
ments (green), and 3) cooperative with range measurements (red).
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Figure C.5: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the north axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure C.6: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the east axis of the local navigation frame. The results shown are for the
first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure C.7: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the down axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure C.8: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute ve-
locity error results . The results shown are for the first of two platforms, trav-
eling along a 25m hallway, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure C.9: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the north axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure C.10: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the east axis of the local navigation frame. The results shown are for the
first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Figure C.11: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the down axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along a 25m hallway, simulated using three system
implementations of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative
without range measurements (green), and 3) cooperative with range measurements
(red).
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Appendix D. Second Platform Simulation Results: Pre-scaling Method

- Sideslip Simulation
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Figure D.1: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the north axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure D.2: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the east axis of the local navigation frame. The results shown are for
the first of two platforms traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure D.3: Simulated 50-run Monte Carlo root-mean-squared (RMS) position error
results along the down axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure D.4: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute po-
sition error results. The results shown are for the first of two platforms, traveling
along sideslip orbits around an object, simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure D.5: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the north axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure D.6: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the east axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure D.7: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity error
results along the down axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure D.8: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute ve-
locity error results . The results shown are for the first of two platforms, traveling
along sideslip orbits around an object, simulated using three system implementations
of the pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range
measurements (green), and 3) cooperative with range measurements (red).
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Figure D.9: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the north axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure D.10: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the east axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Figure D.11: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude error
results about the down axis of the local navigation frame. The results shown are for
the first of two platforms, traveling along sideslip orbits around an object, simulated
using three system implementations of the pre-scaling method: 1) non-cooperative
(blue), 2) cooperative without range measurements (green), and 3) cooperative with
range measurements (red).
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Appendix E. Second Platform Simulation Results: Pre-scaling Method

- Yaw Simulation
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Figure E.1: Simulated 50-run Monte Carlo root-mean-squared (RMS) position er-
ror results along the north axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure E.2: Simulated 50-run Monte Carlo root-mean-squared (RMS) position er-
ror results along the east axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure E.3: Simulated 50-run Monte Carlo root-mean-squared (RMS) position er-
ror results along the down axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure E.4: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute posi-
tion error results. The results shown are for the first of two platforms, performing
a 360◦ counterclockwise yaw withing a 10m radius circular room, simulated using
three system implementations of the pre-scaling method: 1) non-cooperative (blue),
2) cooperative without range measurements (green), and 3) cooperative with range
measurements (red).
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Figure E.5: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity er-
ror results along the north axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure E.6: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity er-
ror results along the east axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure E.7: Simulated 50-run Monte Carlo root-mean-squared (RMS) velocity er-
ror results along the down axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure E.8: Simulated 50-run Monte Carlo root-mean-squared (RMS) absolute veloc-
ity error results . The results shown are for the first of two platforms, performing
a 360◦ counterclockwise yaw withing a 10m radius circular room, simulated using
three system implementations of the pre-scaling method: 1) non-cooperative (blue),
2) cooperative without range measurements (green), and 3) cooperative with range
measurements (red).
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Figure E.9: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude er-
ror results about the north axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).

190



0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

P
it

c
h

 A
tt

it
u

d
e
 R

M
S

 E
rr

o
r 

(r
a
d

)

Time (s)

 

 

Non-Cooperative

Cooperative

Range

Figure E.10: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude er-
ror results about the east axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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Figure E.11: Simulated 50-run Monte Carlo root-mean-squared (RMS) attitude er-
ror results about the down axis of the local navigation frame. The results shown
are for the first of two platforms, performing a 360◦ counterclockwise yaw withing
a 10m radius circular room, simulated using three system implementations of the
pre-scaling method: 1) non-cooperative (blue), 2) cooperative without range mea-
surements (green), and 3) cooperative with range measurements (red).
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